Репозиторий OAI—PMH
Репозиторий Российская Офтальмология Онлайн по протоколу OAI-PMH
Конференции
Офтальмологические конференции и симпозиумы
Видео
Видео докладов
Реферат RUS | Реферат ENG | Литература | Полный текст |
УДК: | 617.753.2:617.735 |
Обрубов А.С., Обрубов С.А., Хаценко И.Е.
Близорукость: функциональное состояние сетчатки
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Минздрава России
Морозовская детская городская клиническая больница Департамента здравоохранения г. Москвы
Близорукость часто ассоциируется с изменениями на глазном дне, которые являются подтверждением увеличения длины переднезадней оси глаза и последующего механического растяжения, а также истончения пигментного эпителия сетчатки и хориоидеи с сопутствующими сосудистыми и дистрофическими изменениями. Ранними изменениями на глазном дне являются локальное перераспределение пигмента (глазное дно паркетного типа) и побледнение диска зрительного нерва. Последующая перипапиллярная атрофия может возникать как вокруг диска зрительного нерва, так и с одной из его сторон. Дальнейшие хориоретинальные дистрофические изменения обычно проявляются в виде полумесяца с височной стороны диска. Площадь этих изменений и размеры стафиломы соответствуют площади истончения пигментного эпителия сетчатки. В тоже время механические аспекты прогрессирования близорукости обусловлены дальнейшим растяжением структур глазного дна, которые становятся все более выраженными. Поздними изменениями осевой близорукости являются уменьшение кровоснабжения сосудистой оболочки и увеличение хориоретинальной дегенерации. Эти изменения сетчатки при близорукости детально изучены. Однако остается неясным, оказывает ли удлинение глаза какое-либо влияние на функционирование сетчатки.
Начиная с публикации G. Karpe в 1945 году [17], в которой он отметил снижение амплитуды b-волны на глазах с миопией, в последующих публикациях авторами отмечаются противоречивые данные об их изменениях на электроретинографии (ЭРГ) при близорукости [19, 34]. Относительно изменений a-волны публикации также противоречивые [6, 39].
В настоящем обзоре мы обобщили данные зарубежной литературы о влиянии близорукости на функционирование различных компонентов сетчатки, включая фоторецепторы, биполярные клетки и внутренние отделы сетчатки, у детей и взрослых.
Существует несколько видов электроретинографии, но мы остановимся только на Ганцфельд ЭРГ и мультифокальной ЭРГ как наиболее часто использующихся для оценки функционирования сетчатки на глазах с близорукостью.
Ганцфельд, или общая электроретинография, хорошо себя зарекомендовала как полезный и неинвазивный инструмент для объективной оценки функционирования сетчатки. Ответ ЭРГ – множество электропотенциалов сетчатки от различных типов клеток сетчатки, чей взаимосвязанный вклад зависит от свойств стимулов и фоновых адаптационных условий. Так, в условиях темновой адаптации, ЭРГ отвечает на яркие вспышки a- и b-волнами, которые изначально отражают соответственно активность фоторецепторов (колбочек и палочек вместе взятых) и деполяризацию биполярных клеток. Ответ ЭРГ на яркие вспышки в условиях световой адаптации отражает активность только колбочек и отходящих от них биполярных клеток [2, 3].
Стандартный протокол исследования общей ЭРГ, разработанный Международным обществом клинических электрофизиологов зрения (ISCEV), включает пять типов ответа: скотопический ответ (палочковый ответ в темно-адаптированном глазу), максимальный или смешанный ответ (получаемый от палочек и колбочек и пострецепторных путей), осцилляторные (колебательные) потенциалы (ОП), получаемые от внутренних слоев сетчатки и амакриновых клеток, фотопический сигнал на вспышку (от колбочек и пострецепторных путей) и мелькающая (ритмичная) ЭРГ – фликер-ответ при мерцающем стимуле с частотой 30 Гц (функция биполярный клеток палочек) [2, 27].
Таким образом, функции разных слоев сетчатки можно оценить по уровню изменения ответа и конфигурации этих пяти типов ответа, что позволяет выявить области поражения сетчатки. В связи с тем, что ЭРГ регистрирует множество потенциалов сетчатки, ее возможности полезны при заболеваниях, поражающих сетчатку целиком (например, пигментная дистрофия сетчатки). Однако общая ЭРГ недостаточно чувствительная для выявления заболеваний, связанных с тонкими или локальными функциональными изменениями внутри сетчатки (например, макулярная дистрофия).
Мультифокальная ЭРГ (мфЭРГ) представляет собой математическую модель топографии биоэлектрической активности сетчатки в центральном поле зрения 60° зрительного угла [2, 15, 38]. В отличие от общей ЭРГ мфЭРГ может регистрировать ответ более чем от 100 разных участков сетчатки одновременно и обеспечивает детализацию функциональной топографии сетчатки. МфЭРГ более чувствительный метод, чем общая ЭРГ, в определении участка дисфункции сетчатки.
Ответный сигнал (волна) на мфЭРГ состоит из трех основных компонентов, называемые N1 (первое негативное отклонение), P1 (первый положительный пик) и N2 (второе негативное отклонение). Ответ N1 включает ответы от тех же структур, которые генерируют a-волну Ганцфельд ЭРГ, а ответ P1 – b-волну фотопической ЭРГ и ОП. Использование мфЭРГ в клинике нашло широкое применение [20] и она доказала свою чувствительность при раннем выявлении дисфункции сетчатки при различной патологии, включая диабетическую ретинопатию [5, 13, 14], токсическую ретинопатию [21], абиотрофии сетчатки [2]. Однако имеется и множество ограничений для использования мфЭРГ, т.к. регистрируемые потенциалы в каждой исследуемой точке по множеству причин не всегда соответствуют локализации процесса и степени патологических изменений [2].
Таким образом, применяя знания об электроретинографическом ответе каждого из множества компонентов, можно оценить влияние близорукости на разные слои сетчатки и ее участки в целом.
Так, у взрослых пациентов с близорукостью установлено уменьшение амплитуды a-волны на ЭРГ [29, 33], что указывает на наличие неправильного функционирования наружного (фоторецепторного) слоя сетчатки. Взаимоотношения между амплитудой ЭРГ и величиной миопии лучше всего выражаются линейной функцией. Также установлено, что амплитуда a-волны на ЭРГ прямо пропорциональна величине близорукости [29] и обратно пропорциональна длине переднезадней оси глаза [33, 40].
В 1960 году G.E. Jayle [16] сообщил о нарушении функции колбочек на глазах с близорукостью.
В настоящее время различают три вида колбочек по чувствительности к разным длинам волн света (цветам). Колбочки S-типа (S от англ. Short – коротковолновый спектр) чувствительны в фиолетово-синей части спектра (443 нм), M-типа (M от англ. Medium – средневолновый) – в зелено-желтой (544 нм), и L-типа (L от англ. Long – длинноволновый) – в желто-красной (570 нм) части спектра. Наличие этих трех видов колбочек (и палочек, чувствительных в изумрудно-зеленой части спектра) дает человеку цветное зрение. Длинноволновые и средневолновые колбочки (с пиками в сине-зеленом и желто-зеленом) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определенного типа реагируют не только на свой цвет – они лишь реагируют на него интенсивнее других [1].
Влияние близорукости на функционирование каждого вида колбочек исследовалось Yamamoto S. с соавторами [43] при помощи специальной техники ЭРГ. В этих исследованиях ЭРГ регистрировалась после предъявления цветных стимулов, получаемых с помощью разных цветных фильтров. Результаты исследований показали, что амплитуды ответов колбочек на коротко-, средне- и длинноволновые стимулы снижаются с увеличением величины близорукости, однако более значимая корреляция выявлена между амплитудой ответа L,M-колбочек и величиной близорукости [43]. Эти находки дали возможность авторам предположить, что L,M-колбочки поражаются при близорукости сильнее S-колбочек.
Ряд исследователей отмечает, что на ЭРГ амплитуда b-волны аналогична амплитуде a-волны и уменьшается прямо пропорционально увеличению величины близорукости и обратно пропорционально длине оси глаза [29, 33, 40]. Однако следует заметить, что интерпретация снижения амплитуды b-волны при близорукости не так проста, как в случае с a-волной. Несмотря на то, что в исследованиях ряда авторов сообщается о снижении амплитуды b-волны на глазах с близорукостью, но это не обязательно говорит о наличии нарушения передачи импульсов между наружными и средними слоями сетчатки и пострецепторной дисфункцией. Чаще всего это происходит потому, что снижение амплитуды a-волны сопровождается прямо пропорциональным снижением амплитуды b-волны.
В зарубежной литературе последних лет сохраняются противоречивые данные о нарушениях проводимости в сетчатке при близорукости. Так, одни исследователи предполагают, что на глазах с близорукостью осуществляется нормальная передача сигнала в сетчатке [32, 33]. Perlman I. с соавторами сообщили, что на всех глазах с близорукостью регистрировали субнормальную амплитуду b-волны, но нормальное отношение амплитуд b-/a-волн. Однако другие исследователи сообщают, что при высокой величине близорукости отмечается снижение соотношения амплитуд b-/a-волн, хотя его значение и остается в пределах нормы. Pallin E. с соавторами [29] считают, что передача сигнала в сетчатке имеет небольшую тенденцию к снижению при высокой величине близорукости.
Следовательно, неоднозначность полученных результатов по нарушениям проводимости в сетчатке при близорукости требует дальнейших исследований.
В зарубежной литературе имеются единичные работы по аномальным ОП и ретинальной адаптации на глазах с близорукостью [9, 10, 40]. Так, Chen с соавторами [9], изучив ретинальную адаптацию на глазах с близорукостью при помощи разновидности мфЭРГ с яркой вспышкой, показали, что ретинальная адаптация варьирует в зависимости от величины миопии. Аномальные ОП и ретинальная адаптация, возможно, связаны с гипотезой, что допамин может играть роль в развитии близорукости.
Известно, что допамин – важный химический мессенджер (передатчик) для процессов в амакриновых и ганглиозных клетках сетчатки и участвует в процессах световой адаптации [41]. Рядом авторов на экспериментальных моделях показано, что допамин – нейротрансмиттер, вырабатываемый внутренним слоем сетчатки, – связан с развитием близорукости [28, 37]. Установлено также, что амакриновые клетки сетчатки играют важную роль в процессах модуляции и контролирования роста глазного яблока [12, 22, 31, 35].
Учитывая, что ретинальные ОП ЭРГ отражают функцию амакриновых клеток, можно предположить, что регистрация аномальных ОП при близорукости свидетельствует об изменениях в уровне допамина во внутренних слоях сетчатки.
Поскольку на глазах с близорукостью, как правило, выявляется дисфункция наружных слоев сетчатки, по-видимому, это может вызывать аномальные изменения параметров ЭРГ (включая ОП) и во внутренних слоях сетчатки.
Есть основания полагать, что связь между аномальными ОП и близорукостью следует интерпретировать с осторожностью, т.к. возможно, что аномальные ОП могут быть вызваны дисфункцией наружных слоев сетчатки.
Макулярные функции на глазах с близорукостью исследованы при помощи мфЭРГ несколькими группами исследователей [7, 8, 18, 26, 42]. Выявлена статистически значимая корреляция между ответом мфЭРГ первого порядка и величиной близорукости. Установлено также, что амплитуда мфЭРГ снижается при увеличении ее величины. Амплитуда параметра P1 на мфЭРГ обратно пропорциональная длине переднезадней оси глаза, а временные показатели пика P1 на мфЭРГ возрастают с увеличением как длины переднезадней оси глаза, так и величины близорукости.
Исторически апробированный первым еще в XIX веке, впоследствии потерявший популярность до 60-х годов XX века и вновь возобновившийся интерес к сегодняшнему дню, по крайней мере, за рубежом [11, 36], атропин считается одним из эффективных местных медикаментозных средств в лечении прогрессирующей близорукости у детей.
Несмотря на лечебный эффект атропина, заключающийся в замедлении прогрессирования миопии, большинство офтальмологов не используют атропин для лечения прогрессирующей близорукости. Это обусловлено побочным действием, вызванным продолжительным местным применением атропина в виде интоксикации сетчатки, световой ретинопатии, влиянием на фовеа и аккомодацию глаза, а также системным эффектом.
Luu C.D. с соавторами [25] регистрировали ответы мфЭРГ у детей, получавших инстилляции капель атропина один раз в день в течение двух лет. Авторы не установили значимого влияния применения атропина на функционирование сетчатки.
Chen J.C. с соавторами [10] исследовали изменения ОП мфЭРГ при эмметропии, стационарной и прогрессирующей близорукости. Авторы обнаружили, что при прогрессирующей близорукости временные показатели мфОП значительно короче по сравнению с глазами с эмметропией и стационарной миопией. Однако между группами по амплитудам ОП не было выявлено статистически значимой разницы.
Luu C.D. с соавторами [24], изучив ответ мфЭРГ
у 81 ребенка в возрасте 9-10 лет с миопией от 1,0 и 6,0 Д, показали, что первая амплитуда пика P1 мфЭРГ внутри центрального кольца в 5° была значительно связана с прогрессированием близорукости в течение двух последующих лет, но не связана с исходной величиной миопии. Амплитуда пика P1 на мфЭРГ в центральном кольце значительно снижалась в группе детей с прогрессирующей миопией.
Ответы мфЭРГ в области между 5° и 35° от центра (кольца 2-5) были сходны во всех группах детей с прогрессирующей близорукостью.
Несмотря на то, что снижение ответа ЭРГ у взрослого населения с миопией хорошо известно, реальные механизмы снижения показателей ЭРГ при близорукости остаются неясными.
Некоторые исследователи предполагают, что снижение амплитуд ЭРГ, выявляемое у взрослых с близорукостью, может быть связано с оптическим фактором, т.е. с уменьшением размеров изображения и снижением освещенности сетчатки при увеличении длины переднезадней оси глаза [30]. Однако другие авторы [22, 31] утверждают, что снижение освещенности сетчатки не объясняет снижение ответа ЭРГ, т.к. ответы на глазах с высокой величиной близорукости имеют значительно более выраженное снижение амплитуды, чем на глазах с эмметропией.
По мнению ряда авторов, есть предположения о том, что амплитуды ЭРГ снижаются при близорукости из-за высокого сопротивления между источником формирования потенциала (сетчатка) и местом его измерения (роговица). Выделяют электрический фактор – увеличение глазного сопротивления электрического потенциала, связанное с увеличением расстояния между источником электропотенциала и регистрирующим его электродом на роговице вследствие увеличения длины переднезадней оси глазного яблока [23, 29].
Причиной для снижения показателей ЭРГ при близорукости может быть как уменьшение плотности фоторецепторов сетчатки, так и морфологические изменения в наружных сегментах фоторецепторов и дисфункция фоторецепторов [4, 7]. Измененные нейрональные процессы могут быть следствием растягивающего напряжения в склере миопического глаза, что может вызывать повышенное разряжение клеток сетчатки и пострецепторную дисфункцию [4].
Некоторыми авторами высказано мнение, что снижение показателей ЭРГ связано с увеличением субретинального пространства и с последующим снижением ответа фоторецепторов [4].
Luu C.D. с соавторами [26] изучили взаимоотношения между амплитудой ЭРГ и близорукостью у взрослых и детей с различной ее величиной. Несмотря на то, что их результаты подтвердили, что существует значимая корреляция между величиной близорукости и амплитудой ЭРГ у взрослых, они не обнаружили такую связь у детей. В свете полученных результатов мало вероятно, что оптический и электрический факторы вызывают снижение показателей ЭРГ, т.к. отсутствует какая-либо связь между амплитудами ЭРГ и величиной близорукости у детей. Эти данные дают весомое доказательство того, что снижение ответа ЭРГ, выявляемое у взрослых, напрямую не связано с выраженностью близорукости. Отсутствие корреляции между амплитудой ЭРГ и величиной близорукости у детей показывает, что на снижение ЭРГ оказывают влияние другие механизмы. Имеются основания считать, что снижение ответа ЭРГ в группе взрослых, вызванного изменениями функционирования сетчатки, связано с длительным течением близорукости.
Таким образом, на основании данных, рассмотренных в представленной зарубежной литературе, можно заключить, что в исследованиях, включавших проведение Ганцфельд ЭРГ, выявлено прогрессивное снижение ответов как a-волны (фоторецепторы), так и b-волны (биполярные клетки) у лиц с прогрессирующей близорукостью и снижение отношения амплитуды b-/a-волн у лиц с очень высокой миопией. Сходное уменьшение ответа P1 в макулярной области выявлено при проведении мфЭРГ. Истинная причина снижения показателей ЭРГ при близорукости остается неясной. Изменения на глазном дне при близорукости происходят со временем и постепенно с развитием задней стафиломы, перипапиллярной атрофии и миопической макулярной дегенерации, которые у некоторых пациентов могут приводить к значительному снижению остроты зрения.
Исследования, которые позволят лучше понять, из-за чего, когда и где происходят функциональные изменения в сетчатке при близорукости, еще ждут своих исследователей.
Начиная с публикации G. Karpe в 1945 году [17], в которой он отметил снижение амплитуды b-волны на глазах с миопией, в последующих публикациях авторами отмечаются противоречивые данные об их изменениях на электроретинографии (ЭРГ) при близорукости [19, 34]. Относительно изменений a-волны публикации также противоречивые [6, 39].
В настоящем обзоре мы обобщили данные зарубежной литературы о влиянии близорукости на функционирование различных компонентов сетчатки, включая фоторецепторы, биполярные клетки и внутренние отделы сетчатки, у детей и взрослых.
Существует несколько видов электроретинографии, но мы остановимся только на Ганцфельд ЭРГ и мультифокальной ЭРГ как наиболее часто использующихся для оценки функционирования сетчатки на глазах с близорукостью.
Ганцфельд, или общая электроретинография, хорошо себя зарекомендовала как полезный и неинвазивный инструмент для объективной оценки функционирования сетчатки. Ответ ЭРГ – множество электропотенциалов сетчатки от различных типов клеток сетчатки, чей взаимосвязанный вклад зависит от свойств стимулов и фоновых адаптационных условий. Так, в условиях темновой адаптации, ЭРГ отвечает на яркие вспышки a- и b-волнами, которые изначально отражают соответственно активность фоторецепторов (колбочек и палочек вместе взятых) и деполяризацию биполярных клеток. Ответ ЭРГ на яркие вспышки в условиях световой адаптации отражает активность только колбочек и отходящих от них биполярных клеток [2, 3].
Стандартный протокол исследования общей ЭРГ, разработанный Международным обществом клинических электрофизиологов зрения (ISCEV), включает пять типов ответа: скотопический ответ (палочковый ответ в темно-адаптированном глазу), максимальный или смешанный ответ (получаемый от палочек и колбочек и пострецепторных путей), осцилляторные (колебательные) потенциалы (ОП), получаемые от внутренних слоев сетчатки и амакриновых клеток, фотопический сигнал на вспышку (от колбочек и пострецепторных путей) и мелькающая (ритмичная) ЭРГ – фликер-ответ при мерцающем стимуле с частотой 30 Гц (функция биполярный клеток палочек) [2, 27].
Таким образом, функции разных слоев сетчатки можно оценить по уровню изменения ответа и конфигурации этих пяти типов ответа, что позволяет выявить области поражения сетчатки. В связи с тем, что ЭРГ регистрирует множество потенциалов сетчатки, ее возможности полезны при заболеваниях, поражающих сетчатку целиком (например, пигментная дистрофия сетчатки). Однако общая ЭРГ недостаточно чувствительная для выявления заболеваний, связанных с тонкими или локальными функциональными изменениями внутри сетчатки (например, макулярная дистрофия).
Мультифокальная ЭРГ (мфЭРГ) представляет собой математическую модель топографии биоэлектрической активности сетчатки в центральном поле зрения 60° зрительного угла [2, 15, 38]. В отличие от общей ЭРГ мфЭРГ может регистрировать ответ более чем от 100 разных участков сетчатки одновременно и обеспечивает детализацию функциональной топографии сетчатки. МфЭРГ более чувствительный метод, чем общая ЭРГ, в определении участка дисфункции сетчатки.
Ответный сигнал (волна) на мфЭРГ состоит из трех основных компонентов, называемые N1 (первое негативное отклонение), P1 (первый положительный пик) и N2 (второе негативное отклонение). Ответ N1 включает ответы от тех же структур, которые генерируют a-волну Ганцфельд ЭРГ, а ответ P1 – b-волну фотопической ЭРГ и ОП. Использование мфЭРГ в клинике нашло широкое применение [20] и она доказала свою чувствительность при раннем выявлении дисфункции сетчатки при различной патологии, включая диабетическую ретинопатию [5, 13, 14], токсическую ретинопатию [21], абиотрофии сетчатки [2]. Однако имеется и множество ограничений для использования мфЭРГ, т.к. регистрируемые потенциалы в каждой исследуемой точке по множеству причин не всегда соответствуют локализации процесса и степени патологических изменений [2].
Таким образом, применяя знания об электроретинографическом ответе каждого из множества компонентов, можно оценить влияние близорукости на разные слои сетчатки и ее участки в целом.
Так, у взрослых пациентов с близорукостью установлено уменьшение амплитуды a-волны на ЭРГ [29, 33], что указывает на наличие неправильного функционирования наружного (фоторецепторного) слоя сетчатки. Взаимоотношения между амплитудой ЭРГ и величиной миопии лучше всего выражаются линейной функцией. Также установлено, что амплитуда a-волны на ЭРГ прямо пропорциональна величине близорукости [29] и обратно пропорциональна длине переднезадней оси глаза [33, 40].
В 1960 году G.E. Jayle [16] сообщил о нарушении функции колбочек на глазах с близорукостью.
В настоящее время различают три вида колбочек по чувствительности к разным длинам волн света (цветам). Колбочки S-типа (S от англ. Short – коротковолновый спектр) чувствительны в фиолетово-синей части спектра (443 нм), M-типа (M от англ. Medium – средневолновый) – в зелено-желтой (544 нм), и L-типа (L от англ. Long – длинноволновый) – в желто-красной (570 нм) части спектра. Наличие этих трех видов колбочек (и палочек, чувствительных в изумрудно-зеленой части спектра) дает человеку цветное зрение. Длинноволновые и средневолновые колбочки (с пиками в сине-зеленом и желто-зеленом) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определенного типа реагируют не только на свой цвет – они лишь реагируют на него интенсивнее других [1].
Влияние близорукости на функционирование каждого вида колбочек исследовалось Yamamoto S. с соавторами [43] при помощи специальной техники ЭРГ. В этих исследованиях ЭРГ регистрировалась после предъявления цветных стимулов, получаемых с помощью разных цветных фильтров. Результаты исследований показали, что амплитуды ответов колбочек на коротко-, средне- и длинноволновые стимулы снижаются с увеличением величины близорукости, однако более значимая корреляция выявлена между амплитудой ответа L,M-колбочек и величиной близорукости [43]. Эти находки дали возможность авторам предположить, что L,M-колбочки поражаются при близорукости сильнее S-колбочек.
Ряд исследователей отмечает, что на ЭРГ амплитуда b-волны аналогична амплитуде a-волны и уменьшается прямо пропорционально увеличению величины близорукости и обратно пропорционально длине оси глаза [29, 33, 40]. Однако следует заметить, что интерпретация снижения амплитуды b-волны при близорукости не так проста, как в случае с a-волной. Несмотря на то, что в исследованиях ряда авторов сообщается о снижении амплитуды b-волны на глазах с близорукостью, но это не обязательно говорит о наличии нарушения передачи импульсов между наружными и средними слоями сетчатки и пострецепторной дисфункцией. Чаще всего это происходит потому, что снижение амплитуды a-волны сопровождается прямо пропорциональным снижением амплитуды b-волны.
В зарубежной литературе последних лет сохраняются противоречивые данные о нарушениях проводимости в сетчатке при близорукости. Так, одни исследователи предполагают, что на глазах с близорукостью осуществляется нормальная передача сигнала в сетчатке [32, 33]. Perlman I. с соавторами сообщили, что на всех глазах с близорукостью регистрировали субнормальную амплитуду b-волны, но нормальное отношение амплитуд b-/a-волн. Однако другие исследователи сообщают, что при высокой величине близорукости отмечается снижение соотношения амплитуд b-/a-волн, хотя его значение и остается в пределах нормы. Pallin E. с соавторами [29] считают, что передача сигнала в сетчатке имеет небольшую тенденцию к снижению при высокой величине близорукости.
Следовательно, неоднозначность полученных результатов по нарушениям проводимости в сетчатке при близорукости требует дальнейших исследований.
В зарубежной литературе имеются единичные работы по аномальным ОП и ретинальной адаптации на глазах с близорукостью [9, 10, 40]. Так, Chen с соавторами [9], изучив ретинальную адаптацию на глазах с близорукостью при помощи разновидности мфЭРГ с яркой вспышкой, показали, что ретинальная адаптация варьирует в зависимости от величины миопии. Аномальные ОП и ретинальная адаптация, возможно, связаны с гипотезой, что допамин может играть роль в развитии близорукости.
Известно, что допамин – важный химический мессенджер (передатчик) для процессов в амакриновых и ганглиозных клетках сетчатки и участвует в процессах световой адаптации [41]. Рядом авторов на экспериментальных моделях показано, что допамин – нейротрансмиттер, вырабатываемый внутренним слоем сетчатки, – связан с развитием близорукости [28, 37]. Установлено также, что амакриновые клетки сетчатки играют важную роль в процессах модуляции и контролирования роста глазного яблока [12, 22, 31, 35].
Учитывая, что ретинальные ОП ЭРГ отражают функцию амакриновых клеток, можно предположить, что регистрация аномальных ОП при близорукости свидетельствует об изменениях в уровне допамина во внутренних слоях сетчатки.
Поскольку на глазах с близорукостью, как правило, выявляется дисфункция наружных слоев сетчатки, по-видимому, это может вызывать аномальные изменения параметров ЭРГ (включая ОП) и во внутренних слоях сетчатки.
Есть основания полагать, что связь между аномальными ОП и близорукостью следует интерпретировать с осторожностью, т.к. возможно, что аномальные ОП могут быть вызваны дисфункцией наружных слоев сетчатки.
Макулярные функции на глазах с близорукостью исследованы при помощи мфЭРГ несколькими группами исследователей [7, 8, 18, 26, 42]. Выявлена статистически значимая корреляция между ответом мфЭРГ первого порядка и величиной близорукости. Установлено также, что амплитуда мфЭРГ снижается при увеличении ее величины. Амплитуда параметра P1 на мфЭРГ обратно пропорциональная длине переднезадней оси глаза, а временные показатели пика P1 на мфЭРГ возрастают с увеличением как длины переднезадней оси глаза, так и величины близорукости.
Исторически апробированный первым еще в XIX веке, впоследствии потерявший популярность до 60-х годов XX века и вновь возобновившийся интерес к сегодняшнему дню, по крайней мере, за рубежом [11, 36], атропин считается одним из эффективных местных медикаментозных средств в лечении прогрессирующей близорукости у детей.
Несмотря на лечебный эффект атропина, заключающийся в замедлении прогрессирования миопии, большинство офтальмологов не используют атропин для лечения прогрессирующей близорукости. Это обусловлено побочным действием, вызванным продолжительным местным применением атропина в виде интоксикации сетчатки, световой ретинопатии, влиянием на фовеа и аккомодацию глаза, а также системным эффектом.
Luu C.D. с соавторами [25] регистрировали ответы мфЭРГ у детей, получавших инстилляции капель атропина один раз в день в течение двух лет. Авторы не установили значимого влияния применения атропина на функционирование сетчатки.
Chen J.C. с соавторами [10] исследовали изменения ОП мфЭРГ при эмметропии, стационарной и прогрессирующей близорукости. Авторы обнаружили, что при прогрессирующей близорукости временные показатели мфОП значительно короче по сравнению с глазами с эмметропией и стационарной миопией. Однако между группами по амплитудам ОП не было выявлено статистически значимой разницы.
Luu C.D. с соавторами [24], изучив ответ мфЭРГ
у 81 ребенка в возрасте 9-10 лет с миопией от 1,0 и 6,0 Д, показали, что первая амплитуда пика P1 мфЭРГ внутри центрального кольца в 5° была значительно связана с прогрессированием близорукости в течение двух последующих лет, но не связана с исходной величиной миопии. Амплитуда пика P1 на мфЭРГ в центральном кольце значительно снижалась в группе детей с прогрессирующей миопией.
Ответы мфЭРГ в области между 5° и 35° от центра (кольца 2-5) были сходны во всех группах детей с прогрессирующей близорукостью.
Несмотря на то, что снижение ответа ЭРГ у взрослого населения с миопией хорошо известно, реальные механизмы снижения показателей ЭРГ при близорукости остаются неясными.
Некоторые исследователи предполагают, что снижение амплитуд ЭРГ, выявляемое у взрослых с близорукостью, может быть связано с оптическим фактором, т.е. с уменьшением размеров изображения и снижением освещенности сетчатки при увеличении длины переднезадней оси глаза [30]. Однако другие авторы [22, 31] утверждают, что снижение освещенности сетчатки не объясняет снижение ответа ЭРГ, т.к. ответы на глазах с высокой величиной близорукости имеют значительно более выраженное снижение амплитуды, чем на глазах с эмметропией.
По мнению ряда авторов, есть предположения о том, что амплитуды ЭРГ снижаются при близорукости из-за высокого сопротивления между источником формирования потенциала (сетчатка) и местом его измерения (роговица). Выделяют электрический фактор – увеличение глазного сопротивления электрического потенциала, связанное с увеличением расстояния между источником электропотенциала и регистрирующим его электродом на роговице вследствие увеличения длины переднезадней оси глазного яблока [23, 29].
Причиной для снижения показателей ЭРГ при близорукости может быть как уменьшение плотности фоторецепторов сетчатки, так и морфологические изменения в наружных сегментах фоторецепторов и дисфункция фоторецепторов [4, 7]. Измененные нейрональные процессы могут быть следствием растягивающего напряжения в склере миопического глаза, что может вызывать повышенное разряжение клеток сетчатки и пострецепторную дисфункцию [4].
Некоторыми авторами высказано мнение, что снижение показателей ЭРГ связано с увеличением субретинального пространства и с последующим снижением ответа фоторецепторов [4].
Luu C.D. с соавторами [26] изучили взаимоотношения между амплитудой ЭРГ и близорукостью у взрослых и детей с различной ее величиной. Несмотря на то, что их результаты подтвердили, что существует значимая корреляция между величиной близорукости и амплитудой ЭРГ у взрослых, они не обнаружили такую связь у детей. В свете полученных результатов мало вероятно, что оптический и электрический факторы вызывают снижение показателей ЭРГ, т.к. отсутствует какая-либо связь между амплитудами ЭРГ и величиной близорукости у детей. Эти данные дают весомое доказательство того, что снижение ответа ЭРГ, выявляемое у взрослых, напрямую не связано с выраженностью близорукости. Отсутствие корреляции между амплитудой ЭРГ и величиной близорукости у детей показывает, что на снижение ЭРГ оказывают влияние другие механизмы. Имеются основания считать, что снижение ответа ЭРГ в группе взрослых, вызванного изменениями функционирования сетчатки, связано с длительным течением близорукости.
Таким образом, на основании данных, рассмотренных в представленной зарубежной литературе, можно заключить, что в исследованиях, включавших проведение Ганцфельд ЭРГ, выявлено прогрессивное снижение ответов как a-волны (фоторецепторы), так и b-волны (биполярные клетки) у лиц с прогрессирующей близорукостью и снижение отношения амплитуды b-/a-волн у лиц с очень высокой миопией. Сходное уменьшение ответа P1 в макулярной области выявлено при проведении мфЭРГ. Истинная причина снижения показателей ЭРГ при близорукости остается неясной. Изменения на глазном дне при близорукости происходят со временем и постепенно с развитием задней стафиломы, перипапиллярной атрофии и миопической макулярной дегенерации, которые у некоторых пациентов могут приводить к значительному снижению остроты зрения.
Исследования, которые позволят лучше понять, из-за чего, когда и где происходят функциональные изменения в сетчатке при близорукости, еще ждут своих исследователей.
Страница источника: 45
OAI-PMH ID: oai:eyepress.ru:article11974
Просмотров: 26363
Каталог
Продукции
Организации
Офтальмологические клиники, производители и поставщики оборудования
Издания
Периодические издания
Партнеры
Проекта Российская Офтальмология Онлайн