Репозиторий OAI—PMH
Репозиторий Российская Офтальмология Онлайн по протоколу OAI-PMH
Конференции
Офтальмологические конференции и симпозиумы
Видео
Видео докладов
Литература | Полный текст |
Киселева О.А., Иомдина Е.Н., Якубова Л.В., Хозиев Д.Д.
Клиническая оценка параметров решетчатой пластинки склеры при первичной открытоугольной глаукоме
1. Иомдина Е.Н., Арутюнян Л.Л., Катаргина Л.А. и др. Взаимосвязь корнеального гистерезиса и структурно-функциональных параметров зрительного нерва при разных стадиях первичной открытоугольной глаукомы. Российский офтальмологический журнал. 2009; 2 (2): 17-23.
2. Иомдина Е.Н., Игнатьева Н.Ю., Данилов Н.А. и др. Биомеханика корнеосклеральной оболочки глаза при миопии и глаукоме: сходство и различия. В кн.: Биомеханика глаза. Сб. трудов конференции. М., 2009:110-114.
3. Quigley H.A. Glaucoma: macrocosm to microcosm. The Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 2005; 46: 2662-2670.
4. Strouthidis N.G., Girard M.J. Altering the way the optic nerve head responds to intraocular pressure-a potential approach to glaucoma therapy. Curr. Opin. Pharmacol. 2013;13:83-89.
5. Quigley H.A., Addicks E.M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch. Ophthalmol. 1981; 99: 137-143.
6. Sigal I.A., Ethier C.R. Biomechanics of the optic nerve head. Exp. Eye Res. 2009; 88: 799-807.
7. Jon2665.
8. Srias J.B., Berenshtein E., Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest. Ophthalmol. Vis. Sci. 2004; 45: 2660-nivas S., Dastiridou A., Durbin M.K. et al. Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography. J. Glaucoma. 2017; 26 (2):138-143.
9. Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 1981; 99: 635-649.
10. Burgoyne C.F., Downs J.C., Bellezza A.J., Hart R.T. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest. Ophthalmol. Vis. Sci. 2004; 45: 4388-4399.
11. Park H.Y., Jeon S.H., Park C.K. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmol. 2012; 119:10-20.
12. Park H.L., Park C.K. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmol. 2013;120: 745-752.
13. Yokota S., Takihara Y., Takamura Y., Inatani M. Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study. BMC Ophthalmol. 2017. 26;17 (1): 57.
14. Kazuko Omodaka, Takaaki Horii, Seri Takahashi, et al. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma. PLoS One. 2015;10 (4): e0122347.
15. Inoue R., Hangai M., Kotera Y. et al. Three-dimensional high speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmol. 2009; 116: 214-222.
16. Курышева Н.И., Паршунина О.А. Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Нацио-нальный журнал Глаукома. 2016; 15 (1): 86-96.
17. Ren R., Yang H., Gardiner S.K. et al. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Invest. Ophthalmol. Vis. Sci. 2014; 55: 1531-1539.
18. Naranjo-Bonilla P., Gimenez-Gomez R., Rios-Jimenez D. et al. Enhanced depth OCT imaging of the lamina cribrosa for 24 hours. Int. J. Ophthalmol. 2017; 10 (2): 306-309.
19. Seo J.H., Kim T.W., Weinreb R.N. Lamina cribrosa depth in healthy eyes. Invest. Ophthalmol. Vis. Sci. 2014. 4; 55 (3): 1241-1251.
20. Quigley H., Arora K., Idrees S. et al. Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes. Invest. Ophthalmol. Vis. Sci. 2017; 58 (5): 2566-2577.
21. Vianna J.R., Lanoe V.R., Quach J., et al. Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness. Ophthalmology. 2017. pii: S0161-6420(16)32467-8.
22. Lee S.H., Kim T.W., Lee E.J. et al. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Invest. Ophthalmol. Vis. Sci. 58 (2): 755-762.
23. Sousa D.C., Leal I., Marques-Neves C. et al. Relationship between intraocular pressure and anterior lamina cribrosa depth: a crosssectional observational study in a healthy Portuguese population. Eur. J. Ophthalmol. 2017; 27(3): 295-300.
24. Villarruel J.M., Li X.Q., Bach-Holm D., Hamann S. Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma. Eur. J. Ophthalmol. 2017; 27 (1): 55-61.
25. Strouthidis N.G, Fortune B., Yang H., et al. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2011; 52: 1206-1219.
26. Reis A.S.C., O'Leary N., Stanfield M.J. et al. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2012; 53: 5819-5826.
27. Quigley H.A., Hohman R.M., Addicks E.M. et al. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am. J. Ophthalmol.1983; 95: 673-691.
28. Bellezza A.J., Rintalan C.J., Thompson H.W. et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2003; 44: 623-637.
29. Kiumehr S., Park S.C., Syril D. et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch. Ophthalmol. 2012; 130: 552-559.
30. Suh M.H., Zangwill L.M., Manalastas P. et al. Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmol. 2016;123 (11): 2309-2317.
31. Иомдина Е.Н., Бауэр С.М., Котляр К.Е. Биомеханика глаза: теоретические аспекты и клинические приложения. М.: РеалТайм, 2015.
32. Girard M.J.A., Downs J.C., Burgoyne C.F. Scleral biomechanics in glaucoma. XIX Biennial ISER Meeting. Montreal. 2010: 155.
33. Quigley H.A., Brown A., Dorman-Pease M.A. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br. J. Ophthalmol. 1991; 75: 552–557.
34. Weale R.A. A biography of the eye. Development, growth, age. London, H.K. Lewis&Co. LTD, 1982. 368 p.
2. Иомдина Е.Н., Игнатьева Н.Ю., Данилов Н.А. и др. Биомеханика корнеосклеральной оболочки глаза при миопии и глаукоме: сходство и различия. В кн.: Биомеханика глаза. Сб. трудов конференции. М., 2009:110-114.
3. Quigley H.A. Glaucoma: macrocosm to microcosm. The Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 2005; 46: 2662-2670.
4. Strouthidis N.G., Girard M.J. Altering the way the optic nerve head responds to intraocular pressure-a potential approach to glaucoma therapy. Curr. Opin. Pharmacol. 2013;13:83-89.
5. Quigley H.A., Addicks E.M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch. Ophthalmol. 1981; 99: 137-143.
6. Sigal I.A., Ethier C.R. Biomechanics of the optic nerve head. Exp. Eye Res. 2009; 88: 799-807.
7. Jon2665.
8. Srias J.B., Berenshtein E., Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest. Ophthalmol. Vis. Sci. 2004; 45: 2660-nivas S., Dastiridou A., Durbin M.K. et al. Pilot Study of Lamina Cribrosa Intensity Measurements in Glaucoma Using Swept-Source Optical Coherence Tomography. J. Glaucoma. 2017; 26 (2):138-143.
9. Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 1981; 99: 635-649.
10. Burgoyne C.F., Downs J.C., Bellezza A.J., Hart R.T. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest. Ophthalmol. Vis. Sci. 2004; 45: 4388-4399.
11. Park H.Y., Jeon S.H., Park C.K. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmol. 2012; 119:10-20.
12. Park H.L., Park C.K. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmol. 2013;120: 745-752.
13. Yokota S., Takihara Y., Takamura Y., Inatani M. Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study. BMC Ophthalmol. 2017. 26;17 (1): 57.
14. Kazuko Omodaka, Takaaki Horii, Seri Takahashi, et al. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma. PLoS One. 2015;10 (4): e0122347.
15. Inoue R., Hangai M., Kotera Y. et al. Three-dimensional high speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmol. 2009; 116: 214-222.
16. Курышева Н.И., Паршунина О.А. Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Нацио-нальный журнал Глаукома. 2016; 15 (1): 86-96.
17. Ren R., Yang H., Gardiner S.K. et al. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Invest. Ophthalmol. Vis. Sci. 2014; 55: 1531-1539.
18. Naranjo-Bonilla P., Gimenez-Gomez R., Rios-Jimenez D. et al. Enhanced depth OCT imaging of the lamina cribrosa for 24 hours. Int. J. Ophthalmol. 2017; 10 (2): 306-309.
19. Seo J.H., Kim T.W., Weinreb R.N. Lamina cribrosa depth in healthy eyes. Invest. Ophthalmol. Vis. Sci. 2014. 4; 55 (3): 1241-1251.
20. Quigley H., Arora K., Idrees S. et al. Biomechanical Responses of Lamina Cribrosa to Intraocular Pressure Change Assessed by Optical Coherence Tomography in Glaucoma Eyes. Invest. Ophthalmol. Vis. Sci. 2017; 58 (5): 2566-2577.
21. Vianna J.R., Lanoe V.R., Quach J., et al. Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness. Ophthalmology. 2017. pii: S0161-6420(16)32467-8.
22. Lee S.H., Kim T.W., Lee E.J. et al. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Invest. Ophthalmol. Vis. Sci. 58 (2): 755-762.
23. Sousa D.C., Leal I., Marques-Neves C. et al. Relationship between intraocular pressure and anterior lamina cribrosa depth: a crosssectional observational study in a healthy Portuguese population. Eur. J. Ophthalmol. 2017; 27(3): 295-300.
24. Villarruel J.M., Li X.Q., Bach-Holm D., Hamann S. Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma. Eur. J. Ophthalmol. 2017; 27 (1): 55-61.
25. Strouthidis N.G, Fortune B., Yang H., et al. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2011; 52: 1206-1219.
26. Reis A.S.C., O'Leary N., Stanfield M.J. et al. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2012; 53: 5819-5826.
27. Quigley H.A., Hohman R.M., Addicks E.M. et al. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am. J. Ophthalmol.1983; 95: 673-691.
28. Bellezza A.J., Rintalan C.J., Thompson H.W. et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2003; 44: 623-637.
29. Kiumehr S., Park S.C., Syril D. et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch. Ophthalmol. 2012; 130: 552-559.
30. Suh M.H., Zangwill L.M., Manalastas P. et al. Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmol. 2016;123 (11): 2309-2317.
31. Иомдина Е.Н., Бауэр С.М., Котляр К.Е. Биомеханика глаза: теоретические аспекты и клинические приложения. М.: РеалТайм, 2015.
32. Girard M.J.A., Downs J.C., Burgoyne C.F. Scleral biomechanics in glaucoma. XIX Biennial ISER Meeting. Montreal. 2010: 155.
33. Quigley H.A., Brown A., Dorman-Pease M.A. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br. J. Ophthalmol. 1991; 75: 552–557.
34. Weale R.A. A biography of the eye. Development, growth, age. London, H.K. Lewis&Co. LTD, 1982. 368 p.
Страница источника: 54-57
Каталог
Продукции
Организации
Офтальмологические клиники, производители и поставщики оборудования
Издания
Периодические издания
Партнеры
Проекта Российская Офтальмология Онлайн